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Abstract: The Asian rice gall midge (Orseolia oryzae (Wood-Mason)) is a major insect pest in rice
cultivation. Therefore, development of a reliable system for the timely prediction of this insect
would be a valuable tool in pest management. In this study, occurring between the period from
2013–2018: (i) gall midge populations were recorded using a light trap with an incandescent bulb, and
(ii) climatological parameters (air temperature, air relative humidity, rainfall and insulations) were
measured at four intensive rice cropping agroecosystems that are endemic for gall midge incidence
in India. In addition, weekly cumulative trapped gall midge populations and weekly averages of
climatological data were subjected to count time series (Integer-valued Generalized Autoregressive
Conditional Heteroscedastic—INGARCH) and machine learning (Artificial Neural Network—ANN,
and Support Vector Regression—SVR) models. The empirical results revealed that the ANN with
exogenous variable (ANNX) model outperformed INGRACH with exogenous variable (INGRCHX)
and SVR with exogenous variable (SVRX) models in the prediction of gall midge populations in both
training and testing data sets. Moreover, the Diebold–Mariano (DM) test confirmed the significant
superiority of the ANNX model over INGARCHX and SVRX models in modeling and predicting rice
gall midge populations. Utilizing the presented efficient early warning system based on a robust
statistical model to predict the build-up of gall midge population could greatly contribute to the
design and implementation of both proactive and more sustainable site-specific pest management
strategies to avoid significant rice yield losses.

Keywords: rice gall midge; light trap catches; climatological parameters; INGARCHX; SVRX; ANNX

1. Introduction

Rice is the staple food crop for more than half of the world’s population. The Asian
gall midge, Orseolia oryzae (Wood-Mason) (Cecidomyiidae: Diptera) (Figure 1a), is one of the
most common difficult-to-control rice pests in South and Southeast Asia [1–3]. In India,
it is the third most important rice pest after the stem borer and the plant hoppers [2],
affecting 30–70% of the total rice area [4]. It is most prevalent in the states of Andhra
Pradesh, Telangana, Tamil Nadu, Kerala, Goa, Karnataka, Maharashtra, Madhya Pradesh,
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Bihar, Odisha, Assam, Manipur, and in certain niches of West Bengal, and Uttar Pradesh of
India [5–8]. The gall midge completes its life cycle in 19–23 days at 22 to 28 ◦C and about
85% humidity. In April and May, pre-monsoon rains in India amplify insect activity in rice
stubble, self-sown rice, and other hosts. The late planted rice varieties receive extensive
damage. Insect activity peaks between the last week of August and the first week of
October. Graminaceous weeds (Leersia hexandra and Echinochloa crus-galli) and wild rice
varieties (Oryza nivara, O. barthii, and O. rufipogon) serve as alternate hosts [6]. Younglings
feed on the shoot meristem during the tillering stage of crops, resulting in the formation of
a tubular structure called ‘silver shoots’ (Figure 1b). The affected tillers fail to bear panicles.
Yield losses caused by the gall midge are highly variable depending on the severity of
attack; however, in extreme cases, complete yield loss of crop is possible. In Southern
India alone, yield loss due to gall midge was estimated to be about 0.8% of total yield or
approximately US$ 80.00 million [2]. Besides the inherent biotic potential of insects, to a
large extent, abiotic factors determine the abundance of insect pests in a crop ecosystem.
Therefore, an efficient early warning system based on a robust statistical model to predict
gall midge population buildup is of great importance in designing and implementing a
proactive and more sustainable site-specific pest control and management strategy.

Figure 1. (a) Adult gall midge, Orseolia oryzae. (b) Symptoms of damage by gall midge.

Count time series modeling is a popular statistical approach in which integer auto-
correlated discrete count observations are considered as inputs, and the observations are
assumed to be derived from Poisson and negative Binomial distributions. Crop pest model-
ing is one of the major areas of count time series modeling wherein daily or weekly counts
of insects (pests), which are autocorrelated in nature, are considered. Though count time
series models and machine learning techniques are applied in different areas, application
of these techniques is novel for the modeling and forecasting of gall midge populations.
Some of the count time series models were applied: in stock exchange data [9,10], monthly
claims count of workers in the heavy manufacturing industry data [11], monthly strike
count time series [12], Campylobacterosis infections count time series [13,14], prediction
of number of dengue incidents in Jakarta [15], and network traffic count time series [16].
Ref. [17] reviewed regression- and machine learning-based crop pest prediction methods.
Refs. [18,19] developed hybrid time series and machine learning models for crop yield
predictions.

The machine learning models were employed in the prediction of various agricultural
fields: prediction of oil seed production [20], banana yield prediction [21], rice yield
prediction [22,23], prediction of rice pests [24], prediction of early blight severity in tomato
crop [25], and prediction of sugarcane borer disease [26].

Predicting rice gall midge populations based on climatological parameters greatly aids
the take up of preventive crop protection measures. However, past works on forecasting
insect pest populations were mostly limited to multiple regression analysis and classical
time series models. For count data that follows non-Gaussian distribution; Poission and
negative binomial, transformation to normality does not improve the accuracy of the
prediction model. Despite the generalized linear model (INGARCH) being better suited
for count data, their applications are limited in the field of pest modelling [27,28]. For
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highly heterogeneous and nonlinear data, prediction models like multiple linear regression
and auto regressive integrated moving average models were also reported to be not
effective [20,21]. However, machine learning models such as SVR, and ANN could be
effective in such conditions as they are assumption-free and data driven.

Modeling and forecasting of insect pest populations is used to provide an aid in
decision making and in planning of crop management activities adequately. However, the
present work is undertaken to develop a robust statistical model for predicting gall midge
populations based on climatological input parameters that are crucial for in life cycles
of this rice pest using count time series and machine learning approaches. The models
were developed to predict gall midge population to minimize the yield losses. For the
first time, we have applied the count time series model, i.e., INGARCH, with weather
variables in insect pest modelling area of agriculture, revealing few applications of machine
learning models in modeling and forecasting pest populations in general. However, the gall
midge prediction is the first attempt in modeling and forecasting using machine learning
techniques like ANN and SVR.

The methodological framework begins with basic descriptive statistics, correlation
analysis, and stepwise regression analysis to understand the causal relationships between
gall midge populations and input variables. Advanced computational methods, such as
INGARCH, ANN and SVR with exogenous weather variables, are developed to model and
predict gall midge populations in Indian hot spots.

2. Materials and Methods
2.1. Data Collection

The Chinsurah type light trap with a 200-watt bulb was used in the study because it is
successfully used in monitoring of rice gall midge and other insect pests in rice ecosystems
throughout the year [29,30]. The bulb was illuminated daily from 6:00 pm to 6:00 am. In
the morning, the collected rice gall midges were brought to the laboratory and the number
of individuals caught per day were manually counted, summed and presented as weekly
cumulative catches [31]. If the insect catches were too large, the population was divided
into different equal subgroups, one subgroup was counted and then multiplied with the
remaining number of subgroups. Data were collected at four hot spot locations in India:
Warangal, Maruteru, Pattambi and Jagdalpur (Figure 2). Corresponding climatological
data on maximum temperature (MAXT), minimum temperature (MINT), total rainfall
(RF), morning relative humidity (RHM), evening relative humidity (RHE) and sunshine
hours (SSH) were also collected from automatic weather stations at the respective locations.
Standard meteorological week (SMW)-wise cumulative catches of gall midge and weekly
averages of climatological parameters were considered for this study. Six-week observa-
tions were used as testing/validation sets, and remaining observations were used as the
training data set.

2.2. Statistical Models

Statistical modeling started with descriptive statistical parameters encompassing
mean, standard error (SE), skewness, kurtosis, minimum observation, maximum obser-
vation, and coefficient of variations (CV), which are important in depicting the nature of
the studied data. Apart from the descriptive statistics, data were depicted graphically
with time series plots. Pearson’s product moment correlation analysis was carried out to
determine the interrelationship among the variables used in the study. Stepwise, a multiple
regression analysis was done to understand the cause-and-effect relationship among the
gall midge populations and exogenous weather variables. The regression equation in terms
of matrix notation can be expressed as;

Y = Xβ + e (1)

where, Y is the variable, X is the vector of exogenous variables, β is the regression coefficient
vector, and e is the residuals term assumed to be normally distributed with e ∼ N

(
0, σ2).
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The time series plots, INGARCH, ANN and SVR models were developed in R software (R
Core Team 2018). Correlation analysis and stepwise regression analysis were carried out in
SAS 9.3 version [32], available at ICAR-Indian Institute of Rice Research, Hyderabad, India.

Figure 2. Study sites for rice gall midge population modeling.

2.2.1. Integer-Valued Generalized Autoregressive Conditional Heteroscedastic
(INGARCH) Model

The time series following the generalized linear model (GLM) framework was elab-
orated by [33]. INGARCH models are the class of GLM [34,35], in which the conditional
distribution of dependent variable is assumed to follow popular discrete distributions like
Poisson, negative binomial, generalized Poisson and double Poisson distributions [10].

Let the count time series be {Yt : t ∈ N} and time varying r-dimensional covari-
ate vector say {Xt : t ∈ N} i.e., Xt = (Xt,1, . . . , Xt,r, )

T . The conditional mean becomes
E(Yt |Ft−1 ) = λt and Ft is historical data. The generalized model form is expressed as
follows:

g(λt) = β0 + ∑p
k=1 αk

∼
g
(
Yt−ik

)
+ ∑q

l=1 βl g (λt−jl) + ηT (2)

Case 1: Consider the situation where g and g̃ are equal to identity, i.e., g(x)=, g̃(x) = x.
Further, Yt follows (Poisson) INGARCH (p, q) model with p > 1 and q ≥ 0 if

(a) Yt conditioned on Yt−1, Yt−2, . . . , is Poisson distributed
(b) The conditional mean λt = E[Yt|Yt−1, Yt−2, . . . , ] satisfies

λt = β0 + ∑p
i=1 αi Yt−i + ∑q

j=1 β j λt−j with β0 > 0 and α1 , . . . , αp , . . . , β1 , . . . , βq ≥ 0 (3)

Assuming further that Yt|Yt−1 is Poisson distributed, then we obtain an INGARCH
model of order p and q, abbreviated as INGARCH (p, q) model. If q = 0, the model can be
referred to as the INAGARCH (p) model. These models are also known as autoregressive
conditional Poisson (ACP) models [9].

Case 2: The negative binomial distribution allows for a conditional variance to be
larger than the mean λt, which is often referred to as over-dispersion (with overdisper-
sion parameter ∅) [36]. It is assumed that Yt| Ft−1 ∼ NegBionom(λt,∅). When ∅→ ∞ ,
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the Poisson distribution is a limiting case of the negative binomial distribution by the
assumption:

Yt|Yt−1, Yt−2, . . . , ∼ Bin
(

n, β + α
Yt−1

n

)
(4)

Further details about INGARCH model estimation using conditional likelihood es-
timation, especially on asymptotic properties, are given by [34] and [37]. The standard
INGARCH model allows forecasts to be made based on only past values of the forecast
variable. The model assumes that future values of a variable depend on its past values and
values of past exogenous variables. The INGARCHX model is an extended version of the
INGARCH model [38].

2.2.2. Support Vector Regression (SVR)

The principal idea involved in SVR is to transform the original input space into
high dimensional variable space and then build the regression or time series model in a
transformed high dimensional feature space [39]. A vector of data set says Z = {xi yi}N

i=1,
where xi ∈ Rn is the input vector, yi is the scalar output, and N is the size of data set. The
general equation SVR can be written as follows:

f (x) = WTφ (x) + b (5)

where, W is weight vector, b is bias term, and superscript T denotes the transpose. The
coefficients W and b are estimated from data by minimizing the following regularized risk
function:

R(θ) =
1
2
‖ w ‖2 + C

[
1
N ∑N

i=1 Lε(yi, f (xi))

]
(6)

This regularized risk function minimizes both the empirical error and regularized
term simultaneously, which helps in avoiding both under and overfitting of the model. In
Equation (8), the first term 1

2‖ w ‖2 is called the ‘regularized term’, which measures the
flatness of the function. Minimizing 1

2‖ w ‖2 will make a function as flat as possible. The
second term 1

N ∑N
i=1 Lε(yi, f (xi)) is called the ‘empirical error’, which was estimated by

Vapnik ε-insensitive loss function as follows:

Lε(yi, f (xi)) = f (x) =
{
|yi, f (xi)− ε|; |yi − f (xi)| ≥ ε,
0 |yi − f (xi)| < ε,

(7)

where, yi is actual value and f (xi) is an estimate value. The most commonly used kernel
function is the radial basis function (RBF) which is given as follows:

k(xi, xj) = exp
{
−γ ‖ x− xi ‖ 2

}
(8)

The performance of RBF kernel function requires optimization of two hyper-parameters:
regularization parameter C, which balances the complexity and approximation accuracy
of the model, and the Kernel bandwidth parameter, which represents the variance of the
RBF kernel function, γ. In SVR and ANN also the exogenous variables are used for both
modeling and forecasting purposes as in INGARCHX model. Schematic representation of
SVR architecture is given in Figure S1.

2.2.3. Artificial Neural Network (ANN)

ANN is the most widely used machine learning technique in the last several decades.
In the area of time series modeling, the ANN is commonly referred to as the autoregressive
neural network as it considers time lags as inputs. The time series framework for ANN can
be mathematically modeled using a neural network with implicit functional representation
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of time. The general expression for the final output Yt of a multi-layer feed forward
autoregressive neural network is expressed as follows:

Yt = α0 + ∑q
j=1 αjg

(
β0j + ∑p

i=1 βijYt−p

)
+ εt (9)

where, αj(j = 0, 1, 2, . . . , q) and βij(i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) are the model param-
eters, also called as the synopsis weights, p is the number of input nodes, q is the number of
hidden nodes, and g is the activation function. Training part in ANN minimizes the error
function between actual and predicted values. The error function of autoregressive ANN
is expressed as follows:

E =
1
N ∑N

t=1 (et)
2=

1
N ∑N

t=1

{
Xt − (w0 + (∑Q

J=1 wJ g
(

woj + ∑P
i=1 wijXt−i))

)}2
(10)

where, N is the total number of error terms. The parameters of the neural network wij

are changed by an amount of changes in ∆wij as ∆wij = −η ∂E
∂wij

, where, η is the learning
rate [20,40]. As in INGARCHX and SVRX models, the exogenous variable will also be used
to model the pest count, and hence becomes ANNX model. Graphical representation of
ANN architecture is given in Figure S2.

2.3. Comparison Criteria

Mean square error (MSE) and root mean square error (RMSE) were used as comparison
criteria for the model performance. The mean square error (MSE) is the average of the sum
of squared error values and given as:

MSE =
∑N

i=1
(
Yi − Ŷi

)2

N
(11)

RMSE is also known as standard error of estimate in regression analysis, and is given as:

RMSE =

√
∑N

i=1
(
Yi − Ŷi

)2

N
(12)

where, Yi is the actual value, Ŷi is the predicted value, and N is the number of observations.

2.4. Diebold–Merino Test

The Diebold–Mariano (DM) test is employed to determine the statistical significance
difference among the models used, based on the residuals of the models [41]. Consider the
residuals of two models as r1 and r2, and di is the absolute difference between residuals;
di = |r1| − |r2| and the autocovariance function γk is expressed as:

γk =
1
n ∑n

i=k+1(di − d)
(

di−k − d
)

(13)

The Diebold–Mariano test statistic is expressed as:

DM =
d√[

γ0 + 2 ∑h−1
k=1 γk

]
/n

(14)

where, h = n1/3 + 1. For testing of the hypothesis, the null hypothesis (H0) and the
alternative hypothesis (H1), H0 = E(d) = 0 or the forecast accuracy is similar for two
models, and H1 = E(d) 6= 0 or the forecast accuracy is different for two models.
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3. Results

The time series plots of weekly (SMW wise) counts of gall midge light trap catches of
four study sites during the observed 2013–2018 period were plotted in Figure 3. Year-wise
time series plots of gall midge populations at all hot spot locations are depicted in Figures
S3–S6. The time series plots show that at all examined locations, the gall midge incidence
was higher between the 35th to 45th SMWs, except at the Maruteru centre, where it showed
two peaks, between the 10th to 20th SMWs and between the 35th to 45th SMWs.

Figure 3. Time series plots of gall midge populations.

Summary statistics of the dependent variable gall midge population and exogenous
weather variables were calculated and presented in Table 1. For instance, Asian gall midge
populations at Warangal, Maruteru, Pattambi and Jagdalpur were 42, 215, 22 and 6, respec-
tively. The number of population oscillates are in a wide range (0–875), leading to a high
percentage of CV and an abnormality of data as skewness and kurtosis are out of normal
range. Summary statistics of weather variables presented in Table 1 are self-explanatory,
showing that data under consideration were highly heterogeneous in nature.

Table 1. Summary statistics of gall midge light trapped individual collections at study locations.

Location Statistics Population MAXT MINT RF RHM RHE SSH

Warangal

Mean 42 32.32 20.05 9.96 86.97 55.93 6.55
S.E. 7.29 0.27 0.27 1.53 0.18 0.55 0.14

Skewness 4.8 1.07 −0.34 4.44 −1.94 0.2 −0.76
Kurtosis 24.68 0.23 −1.06 22.63 10.82 −0.68 −0.18

Minimum 0 25.71 11.29 0 62.29 33 0.31
Maximum 875 45.93 31 204.7 93.14 80.14 11.11

CV (%) 303.53 14.52 23.38 271.23 3.74 17.51 36.73

Maruteru

Mean 215 31.03 24.28 14.27 86.37 73.68 6
S.E. 23.24 0.15 0.19 1.94 0.21 0.23 0.21

Skewness 2.7 0.78 −0.35 4.11 −0.46 0 4.07
Kurtosis 7.4 1 −0.57 22.73 0.21 1.15 32.53

Minimum 0 24.86 16.17 0 75.43 60.71 0.04
Maximum 2088 39.71 33.57 284.6 93.71 85.71 34.65

CV (%) 179.76 7.83 12.74 225.77 4.08 5.2 57.08
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Table 1. Cont.

Location Statistics Population MAXT MINT RF RHM RHE SSH

Pattambi

Mean 22 32.53 23.17 26.24 88.39 58.82 5.95
S.E. 2.98 0.15 0.11 3.13 0.36 0.85 0.13

Skewness 3.9 −0.03 0.75 3.04 −1.23 −0.07 −0.55
Kurtosis 17.66 −0.46 3.36 10.13 1.58 −0.76 −0.64

Minimum 0 24.89 18.11 0 58.29 17.43 0.19
Maximum 372 39.09 32.54 340.5 96.86 94 9.7

CV (%) 238.91 7.97 8.63 210.76 7.27 25.61 39.18

Jagdalpur

Mean 6 30.56 18.64 13.45 89.51 40.49 5.39
S.E. 1.3 0.24 0.35 1.96 0.48 1.55 0.16

Skewness 7.43 0.23 −0.65 3.88 −1.79 −0.01 −0.33
Kurtosis 75.43 1.42 −0.85 17.01 3.02 −0.98 −1.03

Minimum 0 17.84 6.57 0 57.57 1.91 0.03
Maximum 246 41.36 27.8 200.9 97.86 91 9.87

CV (%) 330.76 12.3 29.83 231.81 8.44 60.8 48.04
MAXT: maximum temperature, MINT: minimum temperature, RF: rainfall RHM: morning relative humidity,
RHE: evening relative humidity, SSH: sunshine hours.

3.1. Correlation Analysis

Pearson correlation coefficients between gall midge populations and considered clima-
tological variables are depicted in Table 2. A low positive significant correlation between
gall midge population and RHM, RHE and SSH was observed at Warangal. In Pattambi,
gall midge populations also showed a low positive significant correlation with RHM.
However, correlation with MAXT was of low negative significance. At Jagdalpur, the gall
midge population showed a weak significant correlation with RHM and RHE. Similarly, at
Maruteru, the correlation between the trapped gall midge individuals and meteorological
parameters was weak. Overall, correlation analysis revealed that gall midge population
has association with RHM, RHE, RF and SSH of lower magnitude, ascribable to the hetero-
geneity or high percentage of CV among gall midge populations.

Table 2. Pearson correlation coefficients between gall midge light trapped individual collections and
climatological variables at study locations.

Location Gall Midge MAXT MINT RF RHM RHE

Warangal

MAXT −0.091
(0.1077)

MINT −0.055
(0.3254)

0.59
<0.0001

RF −0.053
(0.3483)

−0.18
(0.0013)

0.19
(0.0009)

RHM 0.151
(0.0072)

−0.16
(0.0054)

0.008
(0.8874)

0.194
(0.0006)

RHE 0.136
(0.0156)

−0.114
(0.0450)

0.56
(<0.0001)

0.41
(<0.0001)

0.32
(<0.0001)

SSH 0.126
(0.0256)

0.43
(<0.0001)

0.011
(0.8404)

−0.48
(<0.0001)

−0.18
(0.0011)

−0.39
(<0.0001)

Maruteru

MAXT 0.0234
(0.6977)

MINT −0.271
(0.653)

0.685
<0.0001

RF −0.0647
(0.283)

−0.041
(0.0497)

0.173
(0.0038)

RHM 0.092
(0.126)

0.250
(<0.0001)

−0.396
(<0.0001)

0.101
(0.0916)

RHE −0.0173
(0.774)

0.316
(<0.0001)

0.169
(0.0046)

0.419
(<0.0001)

0.054
(0.369)

SSH 0.0404
(0.503)

0.0798
(<0.189)

−0.329
(<0.0001)

−0.276
(<0.0001)

0.0904
(0.1331)

−0.424
(<0.0001)
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Table 2. Cont.

Location Gall Midge MAXT MINT RF RHM RHE

Pattambi

MAXT −0.206
(0.0002)

MINT 0.023
(0.6851)

−0.074
0.192

RF −0.0101
(0.8585)

−0.4443
(<0.0001)

0.095
(0.0909)

RHM 0.126
(0.0255)

−0.521
(<0.0001)

0.211
(0.0002)

0.388
(<0.0001)

RHE 0.612
(0.2442)

−0.759
(<0.0001)

0.251
(0.0002)

0.526
(<0.0001)

0.732
(<0.0001)

SSH 0.005
(0.9261)

0.689
(<0.0001)

0.188
(0.0008)

−0.580
(<0.0001)

−0.569
(<0.0001)

−0.809
(<0.0001)

Jagdalpur

MAXT −0.0664
(0.2934)

MINT −0.0064
(0.9195)

0.4088
<0.0001

RF −0.0213
(0.7364)

−0.1367
(0.0299)

0.3368
(<0.0001)

RHM 0.1570
(0.0126)

−0.6879
(<0.0001)

−0.4109
(<0.0001)

0.0996
(0.1148)

RHE 0.1506
(0.0167)

−0.2337
(0.0002)

0.3658
(<0.0001)

0.4056
(<0.0001)

0.1831
(0.0035)

SSH 0.1058
(0.0937)

0.2182
(0.0005)

−0.5653
(<0.0001)

−0.3894
(<0.0001)

−0.1245
(0.0482)

−0.4686
(<0.0001)

Values in parentheses represent probability values.

3.2. Stepwise Regression Analysis

To identify the climatological factors influencing the incidence of gall midge popu-
lation buildup, a stepwise regression analysis was carried out with the results depicted
in Table 3. Some of generated outputs like: (i) MINT, RHE, SSH at Warangal; (ii) RHM at
Maruteru; (iii) MAXT, RHM and SSH at Pattambi, and (iv) MINT, RHM, RHE and SSH at
Jagdalpur showed significant influence on the gall midge population. Though the listed
variables have significant influence on the gall midge populations, the model R2 value
for the fitted regression in all four of the centers is low, indicating that the model is not a
strong fit, for which non-linearity and high heterogeneity in dependent variables may be
responsible.

Table 3. Stepwise regression analysis of gall midge light trapped individual collections and climato-
logical variables at study locations.

Centre Variable Estimate S.E. F Value Pr > F R2 Model R2

Warangal

Intercept −290.71 91.65 10.06 0.0017

0.0854
MINT −12.14 3.15 14.88 0.0001 0.0136
RHE 7.80 1.63 22.84 <0.0001 0.0412
SSH 22.86 5.49 17.34 <0.0001 0.0854

Maruteru
Intercept −955.99 745.79 1.64 0.2010

0.092RHM 13.79 8.62 2.56 0.0110 0.092

Pattambi

Intercept −175.75 80.77 4.73 0.0303

0.1010
MAXT −8.705 1.723 25.50 <0.0001 0.0427
RHM 1.534 0.652 5.54 0.0193 0.0844
RHE −0.677 0.432 2.46 0.1177 0.0938
SSH 5.661 2.121 7.12 0.0080 0.1010

Jagdalpur

Intercept −97.48 25.14 15.04 0.0001

0.1062
MINT 0.89 0.35 6.57 0.0110 0.0247
RHM 0.73 0.21 11.73 0.0007 0.0160
RHE 0.15 0.06 6.51 0.0113 0.0420
SSH 2.88 0.67 18.27 <0.0001 0.0236
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3.3. INGARCHX Model

Prior to subjecting the gall midge individual count time series data into the INGARCH
model, the presence of autocorrelation was confirmed by employing the Box-Pierce non-
correlation test, and the statistic test revealed a highly significant (p < 0.0001) autocorrelation
(Table 4). The INGARCH model with exogenous climatological variables was fitted and
the model parameter was found to be significant, but none of the climatological parameters
were significant at all hot spot locations. The over-dispersion parameters obtained per
location (7.32, 3.30, 2.23 and 5.47) clearly indicated the heterogeneous and over-dispersed
nature of the data, following a negative binomial distribution (Table 4). Diagnostic check-
ing of residuals by the Box-Pierce non-correlation test revealed that the residuals were
autocorrelated or non-random (p < 0.0001) at all examined locations, except at Pattambi,
where the residuals are un-correlated and random in nature (p = 0.7403) (Table 4).

Table 4. Parameter estimation of the INGARCHX model for gall midge populations at study locations.

Centre Parameters Estimate S.E. Z Value p
Box-Pierce Non-Correlation Test

Original Residuals

Warangal

Intercept 3.63 × 10−5 44.48 8.16 × 10−7 0.9999

χ2 = 166.61
p ≤ 0.0001

χ2 = 14.24
p = 0.00016

beta_1 0.46 0.19 2..42 0.0191
beta_52 0.14 0.12 1.17 0.2604
MAXT 2.25 × 10−8 0.64 3.52 × 10−8 0.9999
MINT 7.63 × 10−7 0.78 9.78 × 10−7 0.9999

RF 6.70 × 10−8 0.08 8.38 × 10−7 0.9999
RHM 7.90 × 10−8 0.49 1.61 × 10−7 0.9999
RHE 0.23 0.34 0.6.76 0.5084
SSH 0.024119 0.87 0.0277 0.9778
Over

dispersion
Parameter (∅)

7.32

Maruteru

Intercept 0.0003 412.4300 7.3 × 10−7 0.9999

χ2 = 138.96
p ≤ 0.0001

χ2= 7.5346
p = 0.00605

beta_1 0.8519 0.2369 3.600 0.0003
MAXT 1.48 × 10−5 6.8011 2.2 × 10−6 0.9999
MINT 2.35 × 10−5 4.7364 5.0 × 10−6 0.9999

RF 0.2519 0.4708 0.54 0.5926
RHM 0.1507 2.5737 0.059 0.9533
RHE 1.19 × 10−9 3.2431 3.7 × 10−10 0.9999
SSH 2.3553 4.3648 0.54 0.5895
Over

dispersion
Parameter (∅)

3.30

Pattambi

Intercept 0.0010 8.1951 0.0001 0.9999

χ2 = 190.88
p ≤ 0.0001

χ2= 0.109
p = 0.7403

beta_1 0.7997 0.1950 4.1014 <0.0001
beta_52 0.0095 0.0159 0.5970 0.5505
MAXT 2.30 × 10−12 0.2797 8.22 × 10−12 0.999
MINT 0.0007 0.1898 0.0036 0.9972

RF 0.0015 0.0075 0.1957 0.8448
RHM 6.88 × 10−6 0.0581 0.0001 0.9999
RHE 0.0274 0.0435 0.6325 0.5271
SSH 3.99 × 10−8 0.2681 1.49 × 10−7 0.999
Over

dispersion
Parameter (∅)

2.23

Jagdalpur

Intercept 4.47 × 10−5 3.3598 1.33 × 10−5 0.9999

χ2 = 61.29
p ≤ 0.0001

χ2 = 6.713
p = 0.0095

beta_1 0.29454 0.1820 1.62 0.1056
MAXT 2.34 × 10−12 0.0327 7.16 × 10−11 0.9999
MINT 0.0032 0.0424 0.0755 0.9404

RF 0.0178 0.0207 0.86 0.3891
RHM 4.81 × 10−7 0.0236 2.04 × 10−5 0.9999
RHE 0.0228 0.0089 2.56 0.0103
SSH 1.3 × 10−5 0.0870 1.49 × 10−4 0.9999
Over

dispersion
Parameter (∅)

5.47

S.E.: standard error, p: probability, χ2: chi square test statistic.



Agronomy 2022, 12, 22 11 of 16

Inability of the INGARCHX model to capture the heterogeneity and complex nature
of the data might have led to the non-significant effect of weather variables and significant
residuals of the model.

3.4. SVRX Model

The nonlinear SVR model with exogenous variables for the time series of gall midge
population count was built with parameter specifications given in Table 5. The diagnostic
checking of residuals by the Box-Pierce non-correlation test indicated that the residuals are
autocorrelated or non-random (p < 0.0001) (Table 5).

Table 5. Parameter specifications of SVRX and ANNX models for gall midge populations at study
locations.

Warangal Maruteru Pattambi Jagdalpur

SVRX Model

Kernel function RBF RBF RBF RBF
No. of Support Vectors 139 191 169 107

Cost 1 1 1 1
Gamma 0.16 0.166 0.17 0.170
Epsilon 0.1 0.1 0.1 0.1

Cross validation error 0.024 0.015 0.037 0.033
Box-Pierce non-correlation test for

residuals
141.82

(p < 0.001)
123.92

(p < 0.001)
167.16

(p < 0.001)
37.006

(p < 0.001)

ANNX Model

Input lag 4 5 8 3
Dependent/output variable 1 1 1 1

Hidden layer 1 1 1 1
Hidden nodes 6 6 10 10

Exogenous variables 6 6 6 6
Model 10:6S:1L 11:6S:1L 10:10S:1L 9:10S:1L

Total number of parameters 73 79 161 111
Network type Feed Forward

Activation function I:H Sigmoidal
Activation function H:O Identity

Box-Pierce non-correlation test
for residuals

0.36
(p = 0.55)

1.003 × 10−6

(p = 0.992)
1.997

(p = 0.157)
1.761

(p = 0.184)

I:H: Input to Hidden layer, H:O: Hidden to Output layer.

3.5. ANNX Model

The ANNX model parameters were given in Table 5 for all the four locations. The
gall midge count time series were subjected to the ANN model with 4, 5, 8 and 3 tapped
time delays, six exogenous variables, and 6, 6, 10 and 10 optimum nodes for Warangal,
Maruteru, Pattambi and Jagdalpur centers, respectively. A sigmoidal activation function
in input to hidden layer, and linear identity function in hidden layer to output layer, was
used with feed forward network architecture. The total number of parameters or synaptic
weights obtained was 73, 79, 161 and 111 for four centers, respectively (Table 5). After
model fitting, diagnostic checking of residuals by Box-Pierce non-correlation test indicated
the not correlated or random nature of the residuals (p = 0.55, p = 0.99, p = 0.15 and p = 0.18
for Warangal, Maruteru, Pattambi and Jagdalpur, respectively) (Table 5). Finally, the model
performance in all the four centers in both training and testing sets are given in Table 6.
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Table 6. Comparison criteria for different models for gall midge populations in training and testing
data sets.

Criteria/Model INGARCHX SVRX ANNX

Warangal

Training Set MSE 8696.20 14,291 572.58
RMSE 93.25 119.54 23.92

Testing Set MSE 6972.96 7223.7 1135.4
RMSE 83.5 85 33.69

Maruteru

Training Set MSE 64,874.99 123,352.3 7867.69
RMSE 254.70 351.21 88.77

Testing Set MSE 957,371.5 1,113,217 408,197
RMSE 978.45 1055.09 638.9

Pattambi

Training Set MSE 1094.41 2594.43 11.49
RMSE 33.08 50.93 3.38

Testing Set MSE 4.88 39.39 1.18
RMSE 2.21 6.27 1.37

Jagdalpur

Training Set MSE 354.28 356.00 17.14
RMSE 18.82 18.84 4.14

Testing Set MSE 1.9 12.4 0.42
RMSE 1.38 3.52 0.64

MSE: mean square error, RMSE: root mean square error.

4. Discussion

The results of modeling and predictions of the gall midge population at examined
study sites obtained by employing different models were compared in terms of MSE
and RMSE in both training and testing datasets, and are presented in Table 6. In this
study, the fitness of the stepwise regression model was found to be weak (low R2) due
to non-linearity and high heterogeneity in the dependent variable. However, Samui et al.
(2004) [7] found a strong relationship between temperature, relative humidity, rainfall and
sunshine hours on the development of gall midges in successive generations using stepwise
regression. Amongst the attempted techniques, the ANNX model superiorly outperformed
the INGARCHX and SVRX models in both training and testing data sets, as revealed by
the low MSE and RMSE values. Furthermore, the INGARCHX model performed better
compared to the SVRX model in both training and testing data sets. Performance hierarchy
of these models is as follows: ANNX > INGARCHX > SVRX in both training and validation
sets at all four locations. Similar results were obtained in [42–44], where the ANN model
outperformed the classical autoregressive integrated moving average and SVR models.

In SVR, we considered candidate hyper parameters among several combinations
of user defined parameters. The 10-fold cross validation was carried for each model
combination of hyper parameters, and the lowest cross validation error obtained is reported
in Table 5. In this modelling exercise, we have tuned the model with different combinations
of hyper parameters and chosen the optimum parameters based on the lowest training
error with a margin of error tolerance epsilon. The ANN model for this exercise was
developed with the ‘Liebenberg-Marquardt back propagation algorithm’ in a feed forward
network based on repetitive experimentation. The learning rate and momentum terms was
0.03 and 0.01, respectively. To tune the model, the network was repeated 25 times with a
maximum of 1000 iterations. Different combinations of input lags and hidden nodes were
tried, and candidate model parameters were selected based on the fewest training errors.

The predicted population size of the gall midge by the ANNX model is closer to the
actual gall midge population size, as compared to both INGARCHX and SVRX models
(Figure 4). The comparison criteria (MSE and RMSE) exhibit only the observed differences
between the predicted values of the models. Therefore, the Diebold–Mariano test statistic
(DM test) has been used to determine the statistically significant difference between the
different models used in this study. The INGARCHX (M1), and SVRX (M2) models are
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significantly different with respect to the ANNX (M3) model (Table 7), confirming the
superior performance of the ANNX model over the other two models.

Figure 4. Actual vs. fitted plots of gall midge population.

Table 7. Diebold–Mariano test for comparison of performance of different models with training and
testing data sets at study locations.

Centre Data Type M1, M2 M1, M3 M2, M3

Warangal
Training Set −2.2724

(0.02377)
3.1103

(0.00204)
3.0902

(0.00218)

Testing Set −0.69073
(0.5205)

3.5875
(0.01575)

4.3453
(0.00739)

Maruteru
Training Set −3.1459

(0.00184)
3.9768

(<0.0001)
4.4649

(<0.0001)

Testing Set −1.6994
(0.15)

1.6566
(0.1585)

1.6902
(0.1518)

Pattambi
Training Set −3.0771

(0.0022)
3.3392

(0.0009)
3.6736

(0.0002)

Testing Set −2.5075
(0.0539)

1.5823
(0.1029)

2.9792
(0.0308)

Jagdalpur
Training Set −0.0429

(0.9658)
1.5301

(0.1273)
1.5736

(0.1169)

Testing Set −2.4567
(0.0574)

2.2006
(0.0790)

2.9514
(0.0318)

M1: INGARCHX, M2: SVRX, M3: ANNX.

The outperformance of the ANNX model over the INGARCHX and SVRX models in
both training and testing data sets could be due to its ability to capture the heterogeneous,
nonlinear and complex nature of the data. In ANN, we applied the sigmoidal activation
function to map the input to the hidden layer, whereas the RBF function turns to Gaussian
distribution when we increase the value of gamma. As we explained earlier, count time
series data are derived from non-Gaussian distributional assumptions, which could be the
possible reason why SVR fails to capture the trend in count time series data. Similar results
were obtained in [45], where the ANN outperformed the SVR in modelling and forecasting
ancillary energy market prices.
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In addition, the diagnostic checking of residuals obtained by both INGARCHX and
SVRX models were correlated and non-random in nature, whereas the residuals obtained
by ANNX models were uncorrelated and random in nature, which conclusively weighs in
favor of the ANNX model as a good fit compared to INGARCHX and SVRX models. Inter
combinational significances are clearly represented in Table 7. Similar studies conducted
by [46] for the yield prediction of early potatoes, by [47] for rice blast, and by [48] regarding
the wheat yield in Pakistan revealed that machine learning techniques were superior in
their performance of prediction.

5. Conclusions

In the present study, relevant count time series and machine learning techniques were
applied to develop the rice gall midge occurrence models based on climatological input
variables. The results showed that the INGRACHX and SVRX models were not suitable for
the time series of the gall midge incidence due to the highly nonlinear and heterogeneous
nature of the data. On the other hand, the study clearly revealed that the ANNX model
is a viable and effective alternative for modeling and predicting the gall midge incidence
based on time series data. It can also be inferred that the application of machine learning
techniques such as ANN with exogenous variables in modeling and predicting count
time series can increase the prediction accuracy. Further DM test statistics confirm the
superiority of ANNX models over INGRACHX and SVRX models.

Rice gall midge is a disastrous pest in rice cultivation, causing significant economic
losses not only in the examined Indian agroecosystem, but also across numerous other
Asian agroecosystems. The on-time warning models developed in this study utilizing
machine learning techniques will be of great assistance in predicting the occurrence of
gall midge so that the appropriate management measures can be engaged to minimize the
yield losses. In the future, it is expected that various machine learning techniques will be
intensively used to model the count time series of other various crop pests.
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site; Figure S4: Year-wise time series plots of gall midge population in Marteru study site; Figure S5:
Year-wise time series plots of gall midge population in Pattambi study site; Figure S6: Year-wise time
series plots of gall midge population in Jagdalpur study site.
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