I.	NUTRIEN	T MANAGEMENT TRIALS – AVT-2
	(Colla)	borative with Plant Breeding)
Trial No.	:	1 (NMT- 1a to 1o)
Name of the trial	:	Nutrient response trials on selected AVT- 2 rice cultures under high and low input

management

Objectives :

- To study the grain yield potential, nutrient response and nutrient use efficiency of promising AVT-2 cultures under high and low input management in rice.
- To identify promising, efficient and stable genotypes based on the Grain Yield Efficiency Index (GYEI) and yield reduction in reduced N application
- To support with agronomy data for the release of cultivars in CVRC f

AVT-2 Culture	Days to 50% floweri ng	Checks	Locations
(a) AVT 2-EH (Irriga	ited)		
IET 25826	100	Shalimar Rice-3,	Almora,
IET 25819		Vivekdhan 86 and	Khudwani,
IET 25818		LC	Malan,
			Upper Shillong
(b) AVT 2-MH (Irrigated)			

			1
IET 25836	105	RC Maniphace	Almora,
IET 25830		1(NE), Vivekdhan	Khudwani,
IET 25832		62,	Lamphelpat,
IET 25833		V L Dhan 65(N)	Malan, Umiam,
IET 25841		and	Upper Shillong,
IET 25838		LC	Wangbal
(c) AVT 2-E-DS			
IET 26348	80	NC- Sahbhagidhan,	Chiplima,
IET 26365		Vandana;	Hazaribagh,
IET 25103(R)		ZC-Govind (NW),	Jagdalpur,
IET 26356		Narendra 97 (E),	Mandya, Ranchi,
IET 26337		Varalu and CR	Rewa, Sabour,
IET 25121(R)		Dhan 201 (W&S);	Varanasi
		and LC	
(d) AVT 2-E-TP			
IET 24911	80	NC- Gotra Bidhan	Faizabad,
IET 24914		3;	Maruteru,
IET 25713		ZC-PR 124 (N),	Nagina,
		Luit (NE),	Puducherry,
		Sahbhagidhan	Raipur,
		(C&W), Narendra	Ranchi
		97 (E), DRR Dhan	
		43 (S); US 314	
		(HC); and	
		LC	
(e)AVT 2 – IME (TP)			
IET 24731		NC- IR 64;	Aduthurai,
IET 25746		ZC-PR 113 (N),	Chinsurah,
IET 25764		Lalat (E & NE),	Chiplima,
IET 26126		Karjat 7 (W), MTU	Faizabad,
IET 25745		1010 (C & S);	Gangavathi,Karjat,
IET 26079		HC- US 312; and	Navasari,Pattambi,
IET 25749		LC	ARI-
IET 26125			Rajendranagar
			Jonaranagar

IET 25295(R)			
IET 25289(R)			
IET 25330(R)			
(f) AVT 2 – IM (TP)		1	
IET 26024	100	NC- NDR 359;	Chinsurah,
IET 26027		ZC- Pant Dhan-19	Chiplima,
IET 25997		(N), NDR 8002	Coimbatore,
IET 25785		(E&C), Jaya (NE	Faizabad,
		& S),	Jagdalpur,
		Akshayadhan (W);	Karjat,
		HC- HRI 174;	Kaul,
		and LC	
(g) AVT 2-L			
IET 25269	110	NDR 8002,	Aduthurai,
		Salivahana,	Chinsurah,
		Samba	Chiplima,
		Masuri,	Dhangain,
		Swarna,	Karjat,
		Ranjeet,	Mandya,
		Pushyami and	Maruteru,
		Local check	Pusa
(h) AVT 2-BORO			
IET 25692	100	Gowtham,	Chinsurah,
		IR 64	Chiplima, Cuttack,
			Gerua,
			Titabar
(i) AVT 2-MS			
IET 26263	100	DRRH 3,	Andaman (CIARI),
IET 26227		WGL 14	Chakdah, Karjat,
IET 25804			Kaul, Maruteru,
IET 25795			Mandya,
IET 25798			Nagina, Raipur

·		1	F
IET 25802			
IET 25793			
IET 26241			
(j) AVT 2-RSL		I	
IET 25856	125	Dhanrasi,	Chinsurah,
IET 25219		Pooja,	Dhangain,
		Savithri	Faizabad,
		and Local Check	Ghaghraghat,
			Pusa
(k) AVT 2-SDW			
IET 25212	110-	Purnendu, Sabitha	Cuttack, Faizabad,
	115		Maruteru, Nellore
	_		
(I) AVT 2-AL&ISTV1		1	
IET 18710	100	CSR-10, CSR-	Kanpur, Karnal,
IET 22836		23, CSR-36, Jaya	Navsari, Lucknow
		and Local Check	
(m) AVT 2-CSTVT		CCD 10 Land	Compine
IET 25051		CSR-10, Jaya,	Canning.
IET 25059		Improved White	Panvel
		Ponny, CST 7-1	Vytilla
		and Local Check	
(n) AVT 2-Aerobic		Γ	1
IET 25618(R)	100	AAUDR – 1,	Cuttack, Kaul,
IET 26200		CR Dhan 201,	Ludhiana,
IET 26155		CR Dhan 202,	New Delhi (IARI),
		CK Dhan 202,	
IET 25728		MAS 946 and	Nawagam,

IET 26178			Vadgaon
IET 26157			
IET 26171			
IET 26194			
IET 26170			
IET 26168			
(o) AVT 2-Biofortifie	d		
IET 26383		BPT 5204,	Chinsurah,
IET 26375		Chittimuthyalu,	Coimbattore, Cuttack,
IET 26386		IR 64 and	Hyderabad (IIRR),
		Kalanamak	Kaul, Mandya,
			Maruteru,
			Nagina, Nawagam,
			Pantnagar,
			Rajendranagar (ARI),
			Raipur, Rewa,
			Varanasi

* NC- National Check, ZC- Zonal Check, E-Eastern, W- Western, N-Northern, S-Southern, NE- North Eastern, HC- Hybrid Check, LC-Local Check

Note:

- Please include most recently released variety as local check
- Keep the seeds of standard checks for next season.

Observations:

- 1. Number of panicles/ m^2 at harvest
- 2. Panicle weight (g)
- 3. Days to 50% flowering (compulsory)
- 4. Duration (Seed to Seed) (in days)
- 5. Grain yield (kg/ha)

- 6. Water quantification* (for AEROBIC TRIALS)
- 7. Incidence of disease and pests, if any
- 8. Soil nutrient status (available NPK)

(a) General instructions for transplanted

Layout	:	Split Plot Design
Replications	:	3
Plot Size	:	15 m^2
Spacing	:	20 cm x 10 cm (Location specific spacing)
<u>Treatments :</u>		
Season	:	Kharif
Main plots	:	Nitrogen
		N1 - 50% N/ha of recommended dose
		N2 - 100% N/ha of recommended dose.
		N3 - 150% N/ha of recommended dose.

Sub-plots : Cultures/Varieties

Use urea as a source of nitrogen, apply N in 3 splits (50% at basal + 25% at tillering + 25% at Panicle initiation) and **indicate N rate applied (kg/ha)** under N1, N2 and N3 treatments for computing N response.

(b) General instructions for aerobic rice (AVT-2 E/ME direct seeded):

Layout	:	Split Plot Design
Replications	:	3
Plot Size	:	15 m^2
Spacing	:	Dibble 1 or 2 seeds / hill at spacing of 20 x 10 cm
• Apply H	Pendime	ethalin herbicide @ 1 kg a.i. /ha at near saturated

- condition within 3-4 days of sowing.
- Inter-cultivation at regular intervals is recommended to control weeds

- Maintain aerobic condition and provide need based frequent irrigation so that plants will not experience moisture stress at critical stages of crop growth
- Rainfall data and quantity of irrigation water and Number of irrigations given during crop growth need to be recorded

P, K & Zn levels :

Apply P, K and Zn on soil test basis through Single Super Phosphate, Muriate of Potash and Zinc Sulphate. Indicate the levels of P, K and Zn applied.

Water Management:Recommended practices of irrigation
(Transplanted/direct seeded rice/ Aerobic
rice) and follow other operations as per package
of practices uniformly.

- Conduct the trials with same of cultivars mentioned in the Technical program
- Please retain the seed of check varieties for next season sowing
- Furnish the duration of cultures (seed to seed) under different fertilizer levels.
- Indicate recommended dose of fertilizer (RDF)
- Supply the data of cultivars as per the sequence given in the technical programme.
- Mention the reasons for very high or low yields of the trials
- Mention the incidence of pests and diseases in different levels of N

c). General instructions for evaluation of AVT 2-Biofortified lines :

General	Sow the seedbed as thin as possible		
instructions:	Transplant 25-day old seedlings Transplant seedlings very shallow Gap fill within a week of planting Incorporate fertilizer uniformly , equal quantity and evenly Soil samples before planting and after harvesting to be collected and sent to IIRR for analysis for estimating Fe & Zn content		
Data to be collected:	 Grain yield kg/plot based on net plot size to be reported Panicles per sq.m (no) Days to 50% flowering (no) Plant height (cm) Spikelets per panicle (no) Grain quality characteristics to be provided wherever facilities exist. 50gms of grains per entry in 3 replications after harvesting to be sent to IIRR for Fe & Zn analysis 		

Imposition of Drought

- Trial should be conducted in transplanted condition for yield evaluation
- Drought can be imposed (or stop irrigation) for a period of 25-30 days starting from 50 DAT

- Fertilizer application: all fertilizer doses should be applied before imposing drought. 30% N, full P&K at basal; 40% N at 25 DAT; 30% N at 40 DAT
- Mention if there is any rainfall and quantity of rain during the period

Note: The state wise fertility maps are available and all the fertilizer recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provide RFD as per the recommendation.

II.YIELD ENHANCEMENT TRIALS

Trial No.: 2Trial Code: YET-1YET-1: NEW PLANT TYPE (NPT)

Locations (6): IIRR, NRRI, IARI, PAU, TRRI, NDUAT Test entries: 8 Checks: 2 (PA 6444, HRI 174)

The technical details of this trial needs to be discussed at IIRR with the Scientists of Plant Breeding, Agronomy, Soil Science and Physiology. NRRI scientists also expressed their desire to participate in the discussion. Therefore, this issue is being put up to Director for his guidance.

Trial No Trial Code Name of the trial	 : 3 : YET-2 : Nutrient and Weed management for higher productivity in different rice establishment methods (transplanting, mechanized transplanting, wet direct seeded rice using Drum seeders (puddle soil), SRI, dry direct seeded rice, aerobic rice and semi-dry rice (un-puddled soil)
Objective :	 To identify the optimum and cost effective nutrient management practices in different crop establishment methods To assess the agronomic efficiency , plant and soil nutrient status under different nutrient management practices in different crop establishment methods

Locations:			
Aduthurai	Arundhatinagar(K+R	Chatha	Chiplima
Coimbatore	Faizabad	Gangavati	Kaul
Kota	Ludhiana	Mandya	Maruteru
Nagina	Nawagam	Pantnagar	Pusa
Raipur	Rajendernagar	Ranchi	Rewa
Varanasi	Puducherry		

Kharif - 2018

Main plot treatments – any 3: Methods of crop establishment suitable to that area

- 1. Mechanical Transplanting I method (All the principles as per the SRI)
- Direct seeding (Use of Drum seeder/ dibbling of sprouted seed at 25 x 25 cm) fb SRI principles (saturation method of water management, weeding with cono- weeder and fertilizer management)
- Normal Transplanting (20 x15 cm with flooding water management, 3-4 seedlings transplanted at 25-30 days old seedlings)
- 4. SRI

- 5. Aerobic rice
- 6. Semi dry rice

Sub plot Treatments (7): 1-5 is mandatory

- S-1: 100% of recommended inorganic fertilizers (120:60:40 kg NPK/ha)
- S-2: 75 % inorganic + 25% (equivalent of N dose) organic
- S-3: 150 % recommended fertilizer dose
- S-4: LCC Based N application (*Chart will be provided by IIRR* having shade 3 as critical for N application of 20-25 kg /ha)

S-5*: Location specific fertiliser management

- *Rabi* crop is grown F1- without fertilizer and F2- 100% of the recommended fertilizers to see the effect of direct and residual effect of the fertilizers by superimposing the treatments.
- Same plots can be utilized for *kharif* treatments

*Rabi crop may be rice or any other I.D. crop like wheat, maize, oilseed or pulses.

Design	•	Split plot design
Replications	:	4
Row spacing	:	20 x 15 cm- for T.P and varies for each method
Plot size	:	30 m^2
Main plots	:	3-4 methods of Crop establishment
Sub-plots	:	5 Nutrient management practices
Variety	:	Any HYV (Medium duration) of the location.

Note: The state wise fertility maps are available and all the fertiliser recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provide RFD as per the recommendation

Conduct the trial at a permanent site. Conduct of the trial in both the seasons is a must to know the system productivity.

Observations:

- Plant height
- Dry matter accumulation and partitioning of the dry matter (stem, leaves and grains at different stages)
- Tiller production (effective and ineffective)
- Days to 50% flowering
- Weed parameters in all the treatments(Weed photos, Weed species, Weed density no/m2, Weed dry weight g/m2 at active tillering and panicle initiation stages of Rice crop)
- Pest and disease incidence/dynamics
- Root activity and root parameters
- If possible microbial activities
- Uptake of major and minor nutrients
- Availability of nutrients in the soil (initial and after harvest)
- Yield attributes (Grain number, panicle number, panicle length, panicle weight and test weight)
- Grain and straw yield
- Economic evaluation of different methods of crop establishments
- Initial and final available soil nutrient status of each treatment.

Kharif 2018: Split plot design and

Rabi 2018-2019 Split – split plot design (plot size in Rabi -15 m²) No of treatments in *rabi*: 3 methods x 5 Treatments x 2 *rabi* treatments: 30, Replicated 3 times

Experimental details:

- 1. Identify a suitable plot with least interference of water seepage from adjoining rice fields as irrigation water input needs to be quantified.
- 2. The selected plot should be made weed free following Stale Seed Bed Method i.e., spraying Glyphosate weedicide @ 0.75-1.00 kg a.i./ha 10 12 days prior to opening the fields, followed by ploughing once, allow germination of left over weed seed, and then prepare the field for sowing rice by shallow ploughing to fine tilth and levelling of the field.

- 3. Soil from the experimental area must be analyzed initially for texture, bulk density, soil fractions, pH, OC, EC, CEC, available nutrients N, P, K, Zn, S and soil moisture characteristics at saturation, field capacity and wilting point.
- 4. After dry ploughing the field making the soil into a fine tilth, proper levelling, main blocks are laid with provision for double irrigation channels, and leaving buffer zone of 2 m all round the blocks to minimize water interference from the adjoining plots. Sub plots are laid as per the layout. At the entry point of the plot for irrigation provision should be made to install Digital water meter for quantifying water input or water meter. Total quantity of irrigation water applied during crop season and effective rainfall must be provided.
- 5. For direct seeded rice, dibble 2 3 seeds per hill in a well-prepared and levelled field maintaining spacing of 20×10 cm and irrigated and ensure proper crop stand.
- 6. Chemical Weed control with recommended herbicides one pre emergence application and one post emergence application. If required, another spray of post emergence herbicide for 3rd flush of weeds
- 7. Apply fertilizer as per the treatments.
- 8. In case of occurrence of Fe deficiency, the problem may be corrected by suitable spray schedule (0.50% $(NH_4)_2$ Fe $(SO_4)_2$ in water at pH 5.0) after recording observations on the intensity of deficiency.
- 9. All weed management practices are to be followed to keep the plots weed free in all the plots.
- 10. Send 1 kg processed soil from 0 15 cm depth collected from the experimental area before applying fertilizers to IIRR, Hyderabad.

Trial No Trial Code Name of the trial	: Water mana efficiency a different (transplante wet direct	d rice, mechanized seeded rice using il), aerobic rice and	efficiency in ents methods transplanting, Drum seeders
m n 2. T p n	nanagement pract nethods 'o assess the a otential and wa	suitable and prom tices in different cro agronomic efficiency ter use efficiency u etices in different crop	y, plant water under irrigation
Locations :	1		NT

Faizabad,	Gangavati	Mandya	Nawagam
Pantnagar,	Puducherry	IIRR	Varanasi
_	(Rabi)		
Karaikal	Arundhatinagar	Chatha	

Experimental details:

Design	:	Split plot design, Replications: 3 or 4
Row spacing	:	20 x 15 cm- for T.P and varies for each method
Plot size	:	25 m^2
Variety	:	Any High Yielding Variety (Medium duration)
The irrigation n	nanag	ement methods as main plots (to make water
management pr	ecise	and easier) and crop establishment methods as sub
plots		

Main plots : 3 irrigation management practices

Main plot treatments:

 I_1 – Flooding throught crop growth (3 + / - 2 cm)

 I_2 - Saturation maintenance upto PI and (3 + / - 2 cm) after PI

 $I_{3\,-}$ Alternate wetting and drying (irrigating at 5 -7 days interval

with 5 cm/ha of water (5 cm irrigation at 3 DADPW)up to PI and

(3 + / - 2 cm) after PI (with the help of Boumans Water tube)

Sub plot treatments – any 4 - 5: Methods of crop establishment suitable to that area

- 1. Mechanical Transplanting method on puddled soil (crop management methods same as for puddled transplanted rice)
- 2. Direct wet seeding on puddled soil (Use of Drum seeder/ dibbling of sprouted seed at 25 x 25 cm) fb crop management practices as per direct wet seeded rice
- 3. Normal Hand Transplanting (20 x15 cm with flooding water management, 3-4 seedlings transplanted at 25-30 days old seedlings)
- 4. Aerobic rice
- 5. Direct broadcast dry seeding on well prepared unpuddled soil fb crop management practices for direct dry drill seeded rice (semi dry rice)
- 6. Optional- Location specific
 (*Select 4-5 methods of crop establishment as the choice of the Location)

Experimental details:

Note: The state wise fertility maps are available and all the fertiliser recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provide RFD as per the recommendation

- 1. Identify a suitable plot with least interference of water seepage from adjoining rice fields as irrigation water input needs to be quantified.
- 2. The selected plot should be made weed free following Stale Seed Bed Method i.e., spraying Glyphosate weedicide @ 0.75-1.00 kg a.i./ha 10 12 days prior to opening the fields, followed by ploughing once, allow germination of left over weed seed, and then prepare the field for sowing rice by shallow ploughing to fine tilth and levelling of the field.
- 3. Soil from the experimental area must be analyzed initially for texture, bulk density, soil fractions, pH, OC, EC, CEC, available nutrients N, P, K, Zn, S and soil moisture characteristics at saturation, field capacity and wilting point.
- 4. For direct seeded rice, dibble 2-3 seeds per hill in a well-prepared and levelled field maintaining spacing of 20 x 10 cm and irrigated and ensure proper crop stand.
- 5. Chemical Weed control with recommended herbicides one pre emergence application and one post emergence application. If required, another spray of post emergence herbicide for 3rd flush of weeds
- 6. Apply fertilizer uniformly for all the treatments.
- 7. In case of occurrence of Fe deficiency, the problem may be corrected by suitable spray schedule $(0.50\% (NH_4)_2 \text{ Fe } (SO_4)_2 \text{ in water at pH} 5.0)$ after recording observations on the intensity of deficiency.
- 8. All weed management practices are to be followed to keep the plots weed free in all the plots.
- 9. Send 1 kg processed soil from 0 15 cm depth collected from the experimental area before applying fertilizers to IIRR, Hyderabad.

Details of the plastic water tube- I3 (Bouman tube):

- AWD is also called 'intermittent irrigation' or 'controlled irrigation'
- Alternate flooding

• Compared with the traditional continuous flooding system, AWD using lowland rice cultivars can reduce water input by 15-30% without yield loss



Fig. Safe AWD method

 Fi F	
Fig. How to measure the depth of water	Fig.Can be adopted in the present experiment

Observations:

- Plant height
- Dry matter accumulation and partitioning of the dry matter (stem, leaves and grains at different stages)
- Tiller production (effective and ineffective)
- Weed parameters in all the treatments(weed photos, weed species, weed population no/m2 ,weed dry weight g/m2, at active tillering stage and panicle initiation stages of rice crop)

- Pest and disease incidence/dynamics
- Days to 50% flowering
- Oxidability of the soil
- Root activity and root parameters
- If possible microbial activities
- Uptake of major and minor nutrients
- Treatment wise water input data
- Availability of nutrients in the soil (initial and after harvest)
- Yield attributes (Grain number, panicle number, panicle length, panicle weight and test weight)
- Grain and straw yield
- Economic evaluation of different methods of crop establishments
- Initial and final available soil nutrient status of each treatment.
- After dry ploughing the field making into a fine tilth, proper levelling, main blocks are laid with provision for double irrigation channels, and leaving buffer zone of 2 m all round the blocks to minimize water interference from the adjoining plots. At the entry point of the plot for irrigation provision should be made to install Digital water meter for quantifying water input or water meter. Total quantity of irrigation water applied during crop season and effective rainfall must be provided. Sub plots are laid as per the layout.
- Water input has to be quantified in each treatment (based on no of irrigations and quantity of irrigation for each irrigation)
- Provide total rainfall data

Trial No Trial Code Name of the trial	: Enhancing (ron coating un (Collaborativ	of Direct seeded der different rice e trial with
Locations : Chiplima, Maruteru,	Coimbatore, Raipur	IIRR,	Karjat,
Design : Replication :	Split plot 3		
Main plot :	Four sowings w 1 st sowing 2 nd sowing 3 rd sowing 4 th sowing	with one week in	terval
Sub plots			
 T1 – Iron coated seed, Seed rate 25 kg/ha, Broadcasting in 1-2mm water level condition (Direct sowing) T2 – Iron coated seed, Seed rate 25 kg/ha, Broadcasting in wet Condition (Direct sowing) T3 – Un-coated seed, seed rate 25 kg/ha, Broadcasting in 1-2mm water level condition (Direct sowing) T4 – Un-coated seed, seed rate 25 kg/ha, Broadcasting in wet Condition (Direct sowing) 			
T5 – Normal	transplanting 21 d	ays after sowing	

Observation to be taken:

- 1. Germination Rate(%) (on wet paper in petri dish)
- 2. Seed problem (Bird attack, Snail attack, Rotting etc.) Snail should be removed if you find out
- 3. Rain fall and irrigation flow rate Seed floating and run out from the field when introducing water
- 4. Crop establishment ($plant/m^2$) and distribution
- 5. Rice growth characteristics (flowering time, final plant height, leaf area index or number of leaves(m²), etc.)
- 6. Grain yield(kg/ha) and 1000 grain weight(g)
- 7. Fe content in grain and plant
- 8. Taste(eating quality)
- 9. Chemical check of soil N,P,K & Fe status(Initial/Final)
- 10. Soil condition before and after the test (pH, Eh(v), Fe total and soluble content, fumos etc.)
- 11. Fertilizers (kinds, weight(g/m^2), number of applied times) @120, 60
- 12. Insects and diseases infestation if any, control
- 13. Weather data (Max and Min temperature, Sunshine duration, Rain fall heights and event times, etc.)

Trial No	•	:	6			
Trial cod Name of	-	: 'ial	: Ma yie	eld with gro	practices for enh en manure and n in rainfed upland	utrient
Objectiv	es	:	increas	ing the grai k out the co	ence of agronomic n yield of rainfed ost benefit ratio and	upland rice
Location	s:		•	·		
Arundhathi Nagar Hazaribagh Pusa Ambikapur Hazaribagh Tuljapur Jagdalpur Umiam Upper Shillong					Ambikapur Umiam	
Layout:Factorial RBD (2 factor RBD)Replication:3Factor - 1:Rice alone - M1Rice + GM (Sunhemp/Dhaincha/ or green leaf manuring) - M2						
				Schedules		
	T	N	P	K	ZnSO4	Lime

	i (uti ient beneuules (iig/iiu)					
		Ν	P	K	ZnSO4	Lime
Factor-	T ₁	60	0	40	Foliar Spray-	500
II					(0.5%)	
	T ₂	60	20	40	Foliar Spray-	500
					(0.5%)	
	T ₃	60	40	40	Foliar Spray-	500
					(0.5%)	
	T_4	Optiona	al			
	T ₅	Farmer	practice			
Sources of Phosphorous = SSP (Single Super Phosphate)						
Zinc		=	ZnS	O ₄ (Zin	ic Sulphate)	

the experime	////	
M1T1	M2T3	M2T2
M1T5	M1T3	M2T5
M1T2	M2T4	M1T4
M2T3	M1T2	M2T4
M1T3	M2T1	M1T1
M2T4	M1T5	M1T3
M1T4	M2T5	M2T1
M2T2	M1T1	M1T2
M2T5	M1T4	M2T3
M2T1	M2T2	M1T5

Layout of the experiment:

Note : ZnSO₄ spray 2 times at 20 DAS and 40 DAS

1. In case of iron deficiency, spraying of $FeSO_4 @0.2\%$ is recommended 3 times at 4-5 days interval till the leaves turn to normal green

Season	:	Kharif 2018
Variety (Rice)	:	Anjali/High yield upland local variety
Seed rate Rice	:	60 kg/ha
Sunhemp	:	40 kg/ha (mix seed with soil before sowing)
Line spacing	:	20 cm
Plot size	:	12 m^2
Nitrogen (N in 3 spli	ts –	50% basal + 25% N at active tillering + 25% N at

panicle initiation stage)

PK:Basal

Lime 15 Days before sowing

Note:

Method of sowing : Rice – direct seeding in rows of 20 cm apart Sunhemp/Dhaincha-broadcasting first followed by rice seed sowing in rows of 20 cm apart

- Sunhemp/dhaincha grown as intercrop and at maximum vegetative growth has to be cut and incorporated in between rice rows.
- Weeding has to be done at 20 & 40 Days after Germination(DAG) in M1

• In M₂ at 30 DAG weeds along with Sunhemp/Dhiancha has to be cut and incorporated by spreading in between rice rows.

Note :The state wise fertility maps are available and all the fertiliser recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provide RFD as per the recommendation Observations (SOIL):

- 1. Initial soil samples (composite) for NPK, Organic Carbon, pH & physical properties (Bulk density; particle density; expansion properties; water holding capacity; sand silt and clay content).
- 2. Soil samples after harvest for NPK, Organic Carbon, pH and Microbial population.

Observations (PLANT):

- 1. Sunhemp/Dhaincha dry biomass
- 2. Total tillers/ m^2
- 3. Total panicles/ m^2
- 4. Dry weight of flag leaf at milk stage (50 leaves/plot)
- 5. Filled grains/panicle
- 6. Unfilled grains/panicle
- 7. 1000 grain weight
- 8. Grain yield/5m2
- 9. Straw yield/5m2
- 10. Population at harvest

Chemical analysis: NPK in grain with husk and milled rice grain

NPK in straw NPK in flag leaf NPK in Sunhemp

• Soil and plant samples replication-wise must be sent to Dr. K.Surekha Principal Scientist, and Head Soil Science. IIRR

III. INPUT USE EFFICIENCY (IUE)

Trial No. : 7

Trial code : IUE-

a) NITROGEN USE EFFICENCY (NUE) TRIALS

Locations (4): IIRR, NRRI, Maruteru, PAU Checks: Varadhan, Swarna – Tolerant checks, MTU 1075-Susceptible checks

b) PHOSPHOROUS USE EFFICENCY (PUE) TRIALS

Locations (5): IIRR, NRRI, PAU, Barapani, Ranchi Checks: BPT5204 & ISM – Susceptible checks, Rasi & Vandana – Tolerant checks

For both Nitrogen and Phosphorous trials also scientists of Plant Breeding, Soi Science and Physiology had to sit together and decide the technical program.

***Trials to be finalized with Soil Science**

IV. CONSERVATION AGRICULTURE/SYSTEM BASED MANAGEMENT – CAM

Trial No.: 8Trial Code: CA/SM-1Name of the trial: Evaluation of promising cultivars for late planting

Locations (23): Bikramgunj, Sabour, Ranchi, Entries: 20 Hazaribagh, Varanasi, Rewa, Jabalpur, Raipur, Bilsapur, Sakoli, Sindewahi, Karjat, Marteru, Ragolu, Bapatla, Nellore, Rudrur, IIRR, Kampasagar, Warangal, Jagtial, Mandya and Gangavati

Purpose: To evaluate the suitability of varieties for late sown conditions (or) early sown conditions.

These varieties are pooled from different parts of the country. Evaluation is done through direct seeding. We have not done for early sown conditions. Till now only evaluated for late sown conditions and sowing was requested to be done in either in the end of August or 1st week of September.

Trial No.	:	9
Trial code	:	CA/SM-2
Name of the	:	Conservation Agriculture / system based
trial		management practices in rice and rice
		based cropping systems (crop
		diversification) to utilise the resources and
		enhancing the profitability and productivity

Objectives

- 1. To find out possibilities for growing short duration summer pulse in different rice based cropping sequences
- 2. To study the weed dynamics under different rice-based cropping systems
- 3. To analyse the nutrient uptake pattern in different systems
- 4. To calculate the profitability of the systems

Locations:

Aduthurai (K+R)	Chinsurah(K+R)	Maruteru	Karjat (K+R)
Rajendranagar	Titabar (K+R)	Varanasi	
Patna	Titabar	Vadgaon	

Design	:	Split plot design
Replications	:	3
Plot size	:	Kharif : 150 m ² for each main plot

Treatment

Main plots (Crop establishment methods)

M₁: Transplanting M₂: Wet seeding (line sowing under puddle condition) M3- Aerobic rice – Dry rice cultivation

Sub plots (Cropping sequences)- 9 Residue management in each main plot treatments S₁: No residue S₂: 15cm height of rice straw from groundS₃: 30 cm height of rice straw from ground

S ₁ - M1S1	S ₄ -M2S1	S ₇ -M3S1
S ₂ - M1S2	S ₅ -M2S3	S ₈ -M3S2
S ₃ - M1S3	S ₆ -M2S3	S9-M3S3

*Rabi crop may as per the location specific based on the prevailing cropping system

- For *kharif* rice, *rabi* crops (wheat,/ rice/ maize / oilseeds/ pulse) nutrient will be applied as per the recommended package of the location
- **Note:** Please mention recommended dose of fertilizer for all crops at the respective test location

During summer season all pulse crops will be sown under zero tillage condition

Observations:

- 1. Germination (%)
- 2. Plant density/ m^2 (at 21 DAS and at maturity)
- 3. Tillers/m² (at maximum tillering)
- 4. Dry matter production $/m^2$
- 5. No. of panicles/ m^2
- 6. Test weight of grains (g)
- 7. Weed population (number / m^2 at critical stages -30 and 60 DAS)
- 8. Weed dry matter (g/ m^2 at critical stages -30 and 60 DAS)
- 9. Cost of cultivation for each treatment
- 10.Grain yield (kg/plot)

- 11.Straw yield (kg/plot)
- 12. Soil fertility status (initial and after harvest of each crop)
- 13. Nutrient uptake by crops and soil available nutrient status
- 14. System productivity
- 15. Cost of cultivation (Rs./ha)

Note: The state wise fertility maps are available and all the fertiliser recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provides RFD as per the recommendation.

Associated the Soil scientist of the location to collect data on nutrient uptake

¥	
150 m2	
Canal-	

Lay out of the Experiment - Kharif 2018

50 m ² 50 m ²	
50 m ²	
50 m ²	

Rabi	2018-18
------	---------

Trial No.	:	10			
Trial code	:	CA/SM-3			
Name of the	:	Enhancing	productivity	of	rice-pulse
trial		system under	r different cro	p est	ablishment
		methods			

Objectives

- 5. To find out possibilities for growing short duration summer pulse in different rice based cropping sequences
- 6. To study the weed dynamics under different rice-based cropping systems
- 7. To analyse the nutrient uptake pattern in different systems
- 8. To calculate the profitability of the systems

Locations:

Aduthurai	Arundhutinagar	Chinsurah (K+R),	Cuttack
Jagdalpur	Mandya	Ghaghra ghat	Titabar
Ragolu	Kanpur		

All the RBCS trials need to be conducted in both the seasons

Design : Split plot design Replications : 4 Plot size :

Treatments

Main plots (Crop establishment methods)

M₁: Transplanting

M₂: Wet seeding (line sowing under puddle condition)

Sub plots (Cropping sequences)

- S₁: Rice-wheat-pulse
- S₂: Rice-rice-pulse
- S₃: Rice-maize-pulse
- S₄: Rice-oilseed-pulse
- S_5 : Rice Rice

- For *kharif* rice, *rabi* crops (wheat, rice, maize and oilseeds) and pulse nutrient will be applied as per the recommended package of the location
- **Note:** Please mention recommended dose of fertilizer for all crops at the respective test location

During summer season all pulse crops will be sown under zero tillage condition

Observations:

- 1. Germination (%)
- 2. Plant density/ m^2 (at 21 DAS and at maturity)
- 3. Tillers/m² (at maximum tillering)
- 4. Dry matter production $/m^2$
- 5. No. of panicles/ m^2
- 6. Test weight of grains (g)
- 7. Weed population (number / m^2 at critical stages -30 and 60 DAS)
- 8. Weed dry matter (g/ m^2 at critical stages -30 and 60 DAS)
- 9. Cost of cultivation for each treatment
- 10. Grain yield (kg/plot)
- 11. Straw yield (kg/plot)
- 12. Soil fertility status (initial and after harvest of each crop)
- 13. Nutrient uptake by crops
- 14. System productivity
- 15. Cost of cultivation (Rs./ha)

Note : The state wise fertility maps are available and all the fertiliser recommendations in the AICRP trials should be based on the fertility level suggested by these maps in different states. This is for strict compliance and provide RFD as per the recommendation.

INTEGRATED PEST MANGEMENT (IPM)

Trial No.	:	11
Trial code	:	CA/SM -4
Name of the	:	Integrated Pest Management – On
Trial		farm management of insects, diseases
		and weeds IPMs (Entomology,
		Pathology and Agronomy) - Special
		collaborative trial

Objectives :

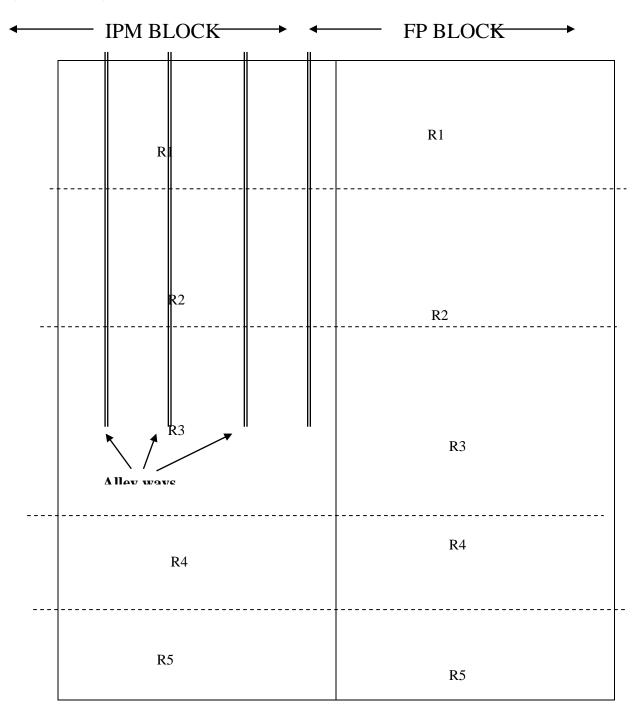
1. To validate IPM practices from a basket of options available and demonstrate to farmers the management of pests in a holistic way (including insects, diseases and weeds).

Locations:

Chatha	Chinsurah(K+R),	Ghaghraghat	Malan
Mandya	Nellore	Raipur,	Titabar,
Jagdalpur,	Pattambi,	Puducherry	Sakoli,

Interact with AICRIP – Entomologist and Pathologist for pest and disease management

Variety	Local popular high yielding variety
Plot size	Two blocks of not less than 1 hectare for each block.
Replication	5 replications. Divide each block into 5 equal sized units (each
S	unit = one replication)
Treatments	Two treatments/ blocks
	i) IPM
	ii) farmers practices (FP)
	The package of practices to be followed in each block are given
	below:


Treatment	IPM block	FP block
Nursery	 Apply butachlor or pretilachlor + safener @ 5 ml/lt water at 8-10 days after sowing. 	♦ As per the local farmers practice.
	 If weed intensity is more apply bispyribacsodium @ 8 ml/lt water at 2-3 leaf stage of weeds 	Please record the practices followed by farmers whenever you gofor observation / visit
Main field	 Transplant seedlings at a spacing of 20 x 15 cm. 	✤ As per the local farmers practice
	Leave alleyways of 30 cm after every 2 m or 10 rows.	Please record the practices followed by farmers whenever
	 Fertilizers should be applied as per local recommended fertilizer dose. 	you go for observation / visit
	 Apply herbicide within one week after transplanting the crop. 	
30 – 59DAT	 Depending on weed intensity spray post emergence herbicide as given N top dressing to be 	As per the local farmers practice (mention the quantities)
	taken up as given in protocol using Leaf Color Chart	Please record the practices followed by farmers whenever
	 Mid season drainage 	you go for observation / visit
> 90 DAT up to harvest	 Mark 5 x 5 m² area and take yield, at 5 places (5 repl.) in this block 	 Mark 5 x 5 m² and take yield, at 5 places (5 repl.) in this block
	Also record the cost involved for each practice/ operation taken in IPM starting from nursery to harvest to estimate cost of cultivation as given in data sheet	Also record the cost involved for each practice/ operation taken up by farmers starting from nursery to harvest to estimate cost of cultivation as given in data sheet

Observations to be recorded:

- Weed population (number/m²) 30, 60 DAT
 Dry weight (gm/ m²) of weeds at 30, 60 DAT
- > Grain yield : Record the yield from 5 places of 1×1 m area from each replication.

Note: In case of insect/ disease infestation, Inform/consult concerned PI/scientist in case of severe infestation or when in doubt about action to be taken.

LAYOUT PLAN FOR INTEGRATED PEST MANAGEMENT (SPECIAL) KHARIF 2016

A. Protocol for effective weed management in IPM Special trial (in IPM treatment)

Since the trial is being laid out in irrigated ecology, weed management both in nursery and main field are equally important.

1) <u>Nursery</u>

- i. Maintain water level to avoid weeds
- ii. In weed intense areas, apply Butachlor @25ml/250 m2 nursery area or Pretilachlor+ safener @ 60ml/250 m2 nursery area application at 8-10 days after sowing seed in nursery beds
- iii. Raising nursery in strips of 1 m wide and leaving water canal of 0.25 m in between will help in intercultural operations

2) <u>Main field:</u>

Immediately after transplanting within a week

* Liquid formulation of new herbicides can be applied by mixing with sand or by foliar spray, respectively, within first week after transplanting by following the procedure outlined hereunder.

* Required quantity of herbicide (Butachlor @3 literss/ha or Pretilachlor @1250-1500 ml/ha or Aniophos 1250-1500 ml/ha or Metsulfuron methyl+chlorimuronethyl (Almix)@20g/ha) mixed with fine sand (50kg/ha) and broad casted. Or mixed in 500 liters water/ha and spray by flat Z type nozzle uniformly within 3 to 7 days after transplanting. It is necessary to maintain standing water (2-3 cm water) in the field.

Do not remove water at least 48 hours after application of herbicide.

* **Note that** under thorough land preparation and proper water management conditions this step may not be required. Take a decision on 2nd day after transplanting based on land leveling and water supply status.

Post-emergence application:

*Broad spectrum weed control – Bispyribasodium @ 250ml/ha at 2-3 leaf stage of weeds- spot application or Chlorimuron + Metsulfuronmethyl (Grasses, Sedges and Annual BLW) at 20-25 DAT @ 20 gm/ha * If Broad leaf weeds predominate, apply 2, 4-D Na salt @ 1250-1500 g/ha at 20-25 DAT

* If grasses predominate, apply Cyhalofbutyl @1000 m/ha at 15-20 DAT or Fenoxaprop p ethyl @ 800-100ml/ ha at 25-30 DAT.

Fertilizer management: Apply top dressing nitrogen based on Leaf Color Chart (modified IIRR -LCC) supplied by IIRR. The instructions to use LCC are given on backside of LCC.

Observation to be recorded under IPM plot as well as in Farmers Practice plots:

Monitor at regular interval weed growth (Group wise no. of weeds i.e., grasses, sedges and broad leaves weeds) in 1 m2 area in each replication with the help of a quadrate. Collect all the weeds, dry them in oven at 600 C for constant dry wet and record dry weight at 20, 40, 60 DAT.

- ➢ Weed population (number/m2) 20, 40 DAT
- Dry weight (gm/ m2)of weeds at 20, 40 DAT
- Observe the changes in weed flora

It is also important to timely record and report farmer's practice being followed in FP plots. This information may also be forwarded to IIRR unit.

Trial No.	:	12
Trial Code	:	CA/SM-5
Name of the	•	Analysis of long term meteorological
trial		data (temperature and rainfall) for
		identifying the reasons for yield
		reduction in different rice based
		cropping systems
Objective	:	To determine the relative sensitivity of rice
		yield to changes in rainfall, Tmin and Tmax

Rationale:

The impacts of temperature and solar radiation on rice yield remain imperfectly understood, despite decades of agronomic research. Current knowledge is based primarily on field trials and greenhouse experiments. These experimental studies indicate that increased temperature and decreased radiation can reduce yield, with the impacts varying across the plant's three growth phases (vegetative, establishment to panicle initiation; reproductive, panicle initiation to flowering; ripening, flowering to mature grain). Rice, alike other crops, also exhibits nonlinear relationships with various weather parameters, particularly temperature. Existing studies confirm that significant changes have occurred in the climate of this region during the 20th Century and that in some regions in the tropics, weather is already approaching critical levels during the susceptible stages of rice growth. Thus, the observed climatic changes (and attributed weather fluctuations) in the past may have had significant influences on rice productivity in the region.

Methodology:

Our general approach was to regress yield on weather variables (rainfall, Maximum and minimum temperature) and in some specifications, exogenously determined economic variables, whose inclusion improved the precision of the estimated weather impacts. ICAR-IIRR and its cooperating centres will collect the data on crop establishment and harvest dates, production inputs, and yields for each location in each season of each year. The mean weekly weather data will be from a single monitoring station at each site, which was within 15–20 km from a site. This detail will enable us to construct location-specific measures of weather variables defined according to the rice plant's three growth phases (for each phase, weekly means of rainfall, Tmin and Tmax). The fact that the dataset include observations over multiple growing seasons enable us to use fixed effects to control for unobserved factors that varied across space (i.e., were unique to each location, such as soil) or time (were common to all observational locations at a given site in a given season and year, such as ambient CO_2 concentration).

Locations: All the locations

Funded and Voluntary centres

Data to be	Grain yield (t/ha)
collected:	Weather parameters (rainfall, T max
	and T min)
	Mean weekly rainfall (2005-2015)

Year		Standard meteorological week										
2005	1	2	3	•	•	•	•	•	50	51	52	53
2006												
2007												
•												
2015												

Mean weekly maximum temperature (2005-2015)

Year		Standard meteorological week										
2005	1	2	3	•		•	•	•	50	51	52	53
2006												
2007												

•						
•						
2015						

Mean weekly minimum temperature (2005-2015)

Year		Standard meteorological week										
2005	1	2	3	•	•	•	•	•	50	51	52	53
2006												
2007												
•												
•												
2015												

Rice grain yield (2005-2015)

Year	Kharif	Rabi
2005		
2006		
2007		
•		
•		
2015		

Standard meteorological week

Week	Dates	Week	Dates
No.		No.	
1	01 Jan – 07 Jan	27	02 Jul –08 Jul
2	08 Jan – 14 Jan	28	09 Jul – 15 Jul
3	15 Jan – 21 Jan	29	16 Jul – 22 Jul
4	22 Jan – 28 Jan	30	23 Jul – 29 Jul
5	29 Jan – 04 Feb	31	30 Jul – 05 Aug

6	05 Feb – 11 Feb	32	06 Aug – 12 Aug
7	12 Feb – 18 Feb	33	13 Aug – 19 Aug
8	19 Feb – 25 Feb	34	20 Aug – 26 Aug
9	26 Feb – 04 Mar	35	27 Aug – 02 Sep
10	05 Mar – 11 Mar	36	03 Sep – 09 Sep
11	12 Mar – 18 Mar	37	10 Sep – 16 Sep
12	19 Mar – 25 Mar	38	17 Sep – 23 Sep
13	26 Mar – 01 Apr	39	24 Sep – 30 Sep
14	02 Apr – 08 Apr	40	01 Oct – 07 Oct
15	09 Apr – 15 Apr	41	08 Oct – 14 Oct
16	16 Apr – 22 Apr	42	15 Oct – 21 Oct
17	23 Apr – 29 Apr	43	22 Oct – 28 Oct
18	30 Apr – 06 May	44	29 Oct – 04 Nov
19	07 May – 13 May	45	05 Nov – 11 Nov
20	14 May – 20 May	46	12 Nov – 18 Nov
21	21 May – 27 May	47	19 Nov – 25 Nov
22	28 May – 03 Jun	48	26 Nov – 02 Dec
23	04 Jun – 10 Jun	49	03 Dec – 09 Dec
24	11 Jun – 17 Jun	50	10 Dec – 16 Dec
25	18 Jun – 24 Jun	51	17 Dec – 23 Dec
26	25 Jun – 01 Jul	52	24 Dec – 31 Dec
Suppl	ementary informat	ion:	
Partic	culars		
Date of	of sowing (kharif)		
Date of	of harvesting (rabi)		
Variet	y		
Any n	najor disease, pest at	tack or rea	ason
•			

for yield loss Nutrient dose applied Irrigated/rainfed

Succeeding/previous crop

Lo	20 14 RF W (m ee m) k no	20 15 RF W (m ee m) k no	R F
tio 20 20 20 20 20 20 20 20 20 20 20 20 11 12 13 R We RF W	14 RF W (m ee m) k no .	15 RF W (m ee m) k no no	F
n 05 06 07 08 09 10 11 12 13 R We RF W RF W <th< th=""><th>14 RF W (m ee m) k no .</th><th>15 RF W (m ee m) k no no</th><th>F</th></th<>	14 RF W (m ee m) k no .	15 RF W (m ee m) k no no	F
aiek(meeall	(m ee m) k no ·	(m ee m) k no	F
nf all no. m) k mo	m) k no ·	m) k no	1
all no no <t< th=""><th>no •</th><th>no</th><th>(</th></t<>	no •	no	(
	•		m
	1		m
		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	1 2	
	3	3	
	4	4	
5 5 5 5 5 5 5 5 5 5	5	5	
6 7 7 <th7< th=""> <th7< th=""> <th7< th=""> <th7< th=""></th7<></th7<></th7<></th7<>	6	6	
7 7 7 7 7 7 7 7 7 7	7	7	
8 8 8 8 8 8 8 8 8	8	8	
9 9 9 9 9 9 9 9 9 9 9	9	9	
10 10 10 10 10 10 10 10 10 10 10	10	10	
	11	11	
12 12<	12	12	
13 13 13 13 13 13 13 13 13 13 13	13	13	
14 14 14 14 14 14 14 14 14 14 14	14	14	
15 15<	15	15	
16 16<	16	16	
17 17 17 17 17 17 17 17 17 17 17	17	17	
18 18 18 18 18 18 18 18 18 18 18 18 18 1	18	18	
19 19 19 19 19 19 19 19 19 19 19 19	19	19	
20 20 20 20 20 20 20 20 20 20 20 20 20	20	20	
21 21 21 21 21 21 21 21 21 21 21 21	21	21	
22 22<	22	22	
23 23 23 23 23 23 23 23 23 23 23	23	23	
24 24 24 24 24 24 24 24 24 24 24	24	24	\square
25 25<	25	25	
26 26<	26	26	
27 27 27 27 27 27 27 27 27 27 27	27	27	
28 28 28 28 28 28 28 28 28 28 28 28 28	28	28	
29 29 29 29 29 29 29 29 29 29	29	29	
30 30<	30	30	
31 31<	31	31	
32 32 32 32 32 32 32 32 32	32	32	
33 33 33 33 33 33 33 33	33	33	

34	34	34	34	34	34	34	34	34	34	34
35	35	35	35	35	35	35	35	35	35	35
36	36	36	36	36	36	36	36	36	36	36
37	37	37	37	37	37	37	37	37	37	37
38	38	38	38	38	38	38	38	38	38	38
39	39	39	39	39	39	39	39	39	39	39
40	40	40	40	40	40	40	40	40	40	40
40	40	40	40	40	41	40	40	40	40	40
42	42	42	42	42	42	42	42	42	42	42
43	43	43	43	43	43	43	43	43	43	43
44	44	44	44	44	44	44	44	44	44	44
44	44	44	45	44	44	44	44	44	44	44
		_	_	_	_	_				
46	46	46	46	46	46	46	46	46	46	46
47	47	47	47		47	47	47			47
48	48	48	48	48	48	48	48	48	48	48
49	49	49	49	49	49	49	49	49	49	49
50	50	50	50	50	50	50	50	50	50	50
51	51	51	51	51	51	51	51	51	51	51
52	52	52	52	52	52	52	52	52	52	52
53	53	53	53	53	53	53	53	53	53	53
54	54	54	54	54	54	54	54	54	54	54

V. SOIL SCIENCE (COLLABORATIVE TRIALS) -SS

Agronomy co-operators list: Funded centers:

	Name of			
S.N	Location	Name of	Phone	E-Mail
0		Co operator		
1	ADUTHURAI	Dr. K. Subrahmaniyan, Rice Agronomist.	9791636600	<u>subrah_arul@yahoo.</u> <u>com</u>
2	BANKURA	Dr. Goutham Kumar Mallick, Joint Director of Agriculture (Mycology)	03242- 251306	<u>rrsbankura@gmail.co</u> <u>m</u>
3	СНАТНА	Dr. Anuradha Saha, Jr. Scientist/Asst. Professor	9419202983	<u>anuradha_agron@ya</u> <u>hoo.co.in</u>
4	CHINSURAH	Mr. B. Naskar Agronomist (AICRIP)	09433425561	<u>bnaskar1970@gmail.</u> <u>com</u>
5	CHIPLIMA	Dr. Debashish Swain Sr. Agronomist (AICRIP)	9938254935, 9439918935	drdebashishswain@g mail.com
6	COIMBATOR E	Dr. K. Rajendran, Professor(Agronom y),	09865560307	<u>rice@tnau.ac.in</u> <u>rajendran.k@tnau.ac.</u> <u>in</u>
7	DHANGAIN	Dr. Kamlesh Kumar Prasad, Scientist	9430220110	dr.kamleshkprasad.ag ron@gmail.com
8	FAIZABAD	Dr. D. K. Verma, Asst. Professor	9838326468	aicripmasodhafzd@g mail.com shivprasadgiri@gmai <u>l.com</u>

9	GANGAVAT HI	Dr. B.G. Masthana Reddy, Professor	9448440518	bgmreddy2006@gam ail.com
10	GHAGHRAG HAT	Dr. Ram Adhar Singh, Asst. Prof.	9415332006	rasingh54@gmail.co m
11	JAGDALPUR	Mr. Manish Kumar, Senior Scientist	9993441213	<u>manish7march1972</u> @yahoo.com
12	KARJAT	Dr. A.S. Dalvi Agronomist, Reg. Agril. Research station	9404302826	nntdalvi@gmail.com
13	KANPUR	Dr. Hari Ram, Asstnt Professor	9450340573	vkyadu@gmail.com
14	KAUL	Dr. Mangat Ram, Senior Agronomist	9466240052	mangatram004@yah oo.com
15	KHUDWANI	Dr. Manzoor Ahmed Ganai Senior Scientist	9906530596, 9419040596	<u>ganai95@gmail.com</u>
16	КОНІМА	In-Charge, Directorate of Agriculture AG Colony	0370- 2243116	Agrilan-ng@gov.in
17	КОТА	Dr. Chandra Prakash, Associate Professor	7597432529	<u>arskota@hotmail.co</u> <u>m</u>
18	LUDHIANA	Dr. Buta Singh Dillon, Asstt Agronomist(Rice)	9463805324	bsdhillon@pau.edu, gmweed@gmail.com
19	MALAN	Dr.B.S.Mankotia, Prin. Scientist	9459083612	bsmankotia@gmail.c om
20	MANDYA	Dr.Denesh. G.R., Agronomist	9448980134	grdesnesh@rediffmai l.com

21	MARUTERU	Dr. C. Venkata Reddy, Scientist &Head Agronomy	9441045863	adr.godavarizone@g mail.com
22	MONCOMPU	Dr.Reena Mathew Associate Professor	9446494769	reenajose86@yahoo. co.in
23	NAGINA	Dr. Vivek Yadav, Asst. Agronomist	9456822780	vivekzrsnagina@gma il.com
24	NAVSARI	Dr. Darpana Patel Asst. Professor	9327549706	<u>darpana srs@yahoo.</u> <u>com</u>
25	NAWAGAM	Dr. Sh. D. J. Kacha, Assistant .Res. Scientist	9825598707	<u>kacha_dharmesh@ya</u> <u>hoo.com</u>
26	PANTNAGAR	Dr. D.K. Singh, Professor Agronomy	9411304500	pooranagro@rediffm ail.com
27	PATTAMBI	Dr. Ilangovan, Professor	9443213757	<u>ilangovan@hotmail.c</u> <u>om</u>
28	PUDUCHERR Y	Mr. S. Ravi, Jr Agronomist	9443293376	pondicherrykvk@yah oo.co.in drsravijapkkvkp@gm ail.com
29	PUSA	Dr. S.K. Chaudhary, Rice Agronomist	9431834082	skcrau@gmail.com
30	RAIPUR	Dr. H.L.Sonboir, Scientist	9406474448	sonboir@rediffmail.c om
31	ARI- RAJENDRA NAGAR	Dr. P. Spandana Bhatt, Scientist	9705162962	spandana9119@gmai 1.com
32	RANCHI	Dr. Ashok kumar Singh, Jr Agronomist	9471358967	<u>aksinghbau65@gmail</u> .com

33	REWA	Dr.R. K. Tiwari, Sr Scientist	9827003237	<u>rktkvkrewa@rediffm</u> <u>ail.com</u>
34	TITABAR	Dr. N.T. Rafique, Principal scientist	9954465049	<u>munrafique@gmail.c</u> <u>om</u>
35	TULJAPUR	Dr. L. S. Deshmukh, Agronomist	09422378482	deshmukh ls@rediff mail.com rprstuljapur@gmail.c om
36	UPPER SHILLONG	Mr. Ban Shylla, Res. Officer (AICRIP)		banshylla@gmail.co m
37	VARANASI	Dr. V.K. Srivastava, Prof Sr. Agronomist	9415819900	vksrivastava_bhu@re diffmail.com vksrivastava_bhu@g mail.com
38	WANGBAL	Dr. Nimai Singh	7085990132	nimai15n@gmail.co m

S.N 0	Location	Name of Co operator	Phone	E-Mail
1	ANDAMAN	Dr.B.Gangaiah, Head, NRM - CIARI, Portblair	9531808744	<u>bandla_gan@hotmail.</u> <u>com</u>
2	ALMORA	Dr. Vijay Singh Meena Scientist(SS)	91- 9410971469	vijayssac.bhu@gmail. com vijayssac.bhu@hotmai l.com
3	ARUNDATINA GAR	Dr. Ashim Das, Agronomist	9436135791	ashimdas1158@gmail. com
4	CANNING TOWN	Dr. S. K. Sarangi	03218- 255241	sksarangicanning@gm ail.com cssri.canning@gmail.c om
5	СНАКДАНА	Dr. Sukanta Pal, Prof.Agron.	9051339686	sukanta.agron@rediff mail.com
6	CUTTACK	Dr. Sanjay Saha, Weed Scientist	7377121726	ssahacrri@gmail.com
7	GERUA	Dr.Teekam Singh, Sr. Scientist	9435397121	<u>tiku_agron@yahoo.co.</u> <u>in</u> <u>tikuagron@gmail.com</u>
8	GIRIDIH	Dr.Tapan Sasmal, Asso.Scientist 'A'	03325- 753226	tapansasmal@yahoo.c om, tapansasmal@isical.ac .in
9	HAZARIBAG	Dr. C.V. Singh, Sr.Scientist	9431793864	<u>cvs.hzb@gmail.com</u> <u>cvs.hzb@live.co.u</u> k

Voluntary Centers

10	KARAIKAL	Dr. V. Chellamuthu, Professor	9443527164	<u>drvcmuthu@gmail.co</u> <u>m</u>
11	KARNAL	Dr. Krishnamurthi, Scientist	8053726399	<u>krishna.murthy@icar.</u> <u>gov.i</u> n
12	LUCKNOW	Dr. Y. P. Singh, Principal Scientist	7309563010	ypsingh_5@yahoo.co. in
13	MEDZIPHEM A	Dr. P. K.Singh, Assist. Professor	9436264179	drpksingh274@gmail. com
16	PANVEL	Dr. P. B. Vanave Rice Breeder	9420959529	Klrs59@gmail.com pbvanave@gmail.com
18	PHONDAGHA T	Dr.V.N.Shete Agronomist	09421343562	vijayshetye68@gmail. com vijayshetye68@yahoo .com
21	SABOUR	Dr. Arnab Roy Chowdhary Asst. Professor	9472239970	agnabuas@gmail.com
22	UMIAM	Thoithoi Devi Scientist (Agronomy)	9402196940	rgidu@yahoo.co.in
23	VADGAON	Dr.N.V.Kashid, Officer Incharge	9422851505	kashidnv@gmail.com ars_vadgaonmaval@re diffmail.com

Funded centers: Soil Science Locations:

1	Kanpur		
2	Maruteru		
3	Titabar		
4	Pantnagar*		
5	Pusa		
6	Karaikkal		
7	Moncompu		
8	Chiplima*		
9	Mandya		
10	Kaul*		

• Yet to recruit the staff

Note: As per the Work shop proceedings the Agronomy and soil Science trials need to be conducted in collaboration and there should not be any repetition of the trials at these locations

Acknowledgements

We sincerely thank **Dr. Biswajit Guha** (Head Agronomy AAU, Jorhat) for his valuable inputs in formulation of this technical programme. Also thank Dr. S.Bhaskar ADG (AAF & CC) **Dr. P. C. Pandey**, Professor (Agronomy) GBPUAT, Pantnagar, Chairman of the concurrent session, all the co-operators, colleagues at IIRR and Director, IIRR for their inputs and support in the formulation of technical program 2018-18.

Field Noting:

Sl.No	Date	Activity/ observations

Sl.No	Date	Activity/ observations

<u>Scientists from IIRR</u> Department of Agronomy, Indian Institute of Rice Research, Rajendranagar, Hyderabad – 500 030 (T.S.)

Dr. R. Mahender Kumar	Principal Scientist and Head (Agronomy)	kumarrm21364@gmail.com (Mobile: 9440476493)
Dr. B. Sreedevi	Principal Scientist (Agronomy)	sreedevi.palakolanu@gmail.com
Dr Mangal Deep Tuti	Scientist (Agronomy)	mangal.iari@gmail.com
Dr. Vidhan Singh	Principal Scientist	vidhan_singh@yahoo.com
	(Agri Engineering)	
Mr. Soumya Saha	Scientist (Agronomy)	saha.soumya5@gmail.com
Dr. Aarti Singh	Scientist (Agronomy)	aartisingh810@gmail.com
Dr. M. N. Arun	Assistant Chief Technical	arun_tulasi2011@yahoo.in